Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 321: 117489, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38012973

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Litsea glaucescens K. (Lauraceae) is a small tree from the Mexican and Central American temperate forests, named as "Laurel". Its aromatic leaves are ordinarily consumed as condiments, but also are important in Mexican Traditional Medicine, and among the most important non wood forest products in this area. The leaves are currently used in a decoction for the relief of sadness by the Mazahua ethnic group. Interestingly, "Laurel" has a long history. It was named as "Ehecapahtli" (wind medicine) in pre-Columbian times and applied to heal maladies correlated to the Central Nervous System, among them depression, according to botanical texts written in the American Continent almost five centuries ago. AIM OF THE STUDY: Depression is the first cause of incapacity in the world, and society demands alternative treatments, including aromatherapy. We have previously demonstrated the antidepressant-like activity of L. glaucescens leaves' essential oil (LEO), as well as their monoterpenes linalool, and beta-pinene by intraperitoneal route in a mice behavioral model. Here we now examined if LEO and linalool exhibit this property and anxiolytic activity when administered to mice by inhalation. We also investigated if these effects occur by BDNF pathway activation in the brain. MATERIALS AND METHODS: The LEO was prepared by distillation with water steam and analyzed by gas chromatography-mass spectrometry (GC-MS). The monoterpenes linalool, eucalyptol and ß-pinene were identified and quantified. Antidepressant type properties were determined with the Forced Swim Test (FST) on mice previously exposed to LEO or linalool in an inhalation chamber. The spontaneous locomotor activity and the sedative effect were assessed with the Open Field Test (OFT), and the Exploratory Cylinder (EC), respectively. The anxiolytic properties were investigated with the Elevated Plus Maze Apparatus (EPM) and the Hole Board Test (HBT). All experiments were video documented. The mice were subjected to euthanasia, and the brain hippocampus and prefrontal cortex were dissected. RESULTS: The L. glaucescens essential oil (LEO) contains 31 compounds according to GC/MS, including eucalyptol, linalool and beta-pinene. The LEO has anxiolytic effect by inhalation in mice, as well as linalool, and ß-pinene, as indicated by OFT and EC tests. The LEO and imipramine have antidepressant like activity in mice as revealed by the FST; however, linalool and ketamine treatments didn't modify the time of immobility. The BDNF was increased in FST in mice treated with LEO in both areas of the brain as revealed by Western blot; but did not decrease the level of corticosterone in plasma. The OFT indicated that LEO and imipramine didn't reduce the spontaneous motor activity, while linalool and ketamine caused a significant decrease. CONCLUSION: Here we report by the first time that L. glaucescens leaves essential oil has anxiolytic effect by inhalation in mice, as well as linalool, and ß-pinene. This oil also maintains its antidepressant-like activity by this administration way, similarly to the previously determined intraperitoneally. Since inhalation is a common administration route for humans, our results suggest L. glaucescens essential oil deserve future investigation due to its potential application in aromatherapy.


Assuntos
Ansiolíticos , Ketamina , Lauraceae , Litsea , Óleos Voláteis , Humanos , Camundongos , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Óleos Voláteis/química , Fator Neurotrófico Derivado do Encéfalo , Imipramina/farmacologia , Eucaliptol/farmacologia , Ketamina/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/química , Monoterpenos/farmacologia , Comportamento Animal
3.
Neurochem Res ; 41(10): 2559-2572, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27321306

RESUMO

Long-term exposure to inorganic arsenic (iAs) through drinking water has been associated with cognitive impairment in children and adults; however, the related pathogenic mechanisms have not been completely described. Increased or chronic inflammation in the brain is linked to impaired cognition and neurodegeneration; iAs induces strong inflammatory responses in several cells, but this effect has been poorly evaluated in central nervous system (CNS) cells. Because astrocytes are the most abundant cells in the CNS and play a critical role in brain homeostasis, including regulation of the inflammatory response, any functional impairment in them can be deleterious for the brain. We propose that iAs could induce cognitive impairment through inflammatory response activation in astrocytes. In the present work, rat cortical astrocytes were acutely exposed in vitro to the monomethylated metabolite of iAs (MMAIII), which accumulates in glial cells without compromising cell viability. MMAIII LD50 in astrocytes was 10.52 µM, however, exposure to sub-toxic MMAIII concentrations (50-1000 nM) significantly increased IL-1ß, IL-6, TNF-α, COX-2, and MIF-1 gene expression. These effects were consistent with amyloid precursor protein (APP) and ß-secretase (BACE-1) increased gene expression, mainly for those MMAIII concentrations that also induced TNF-α over-expression. Other effects of MMAIII on cortical astrocytes included increased proliferative and metabolic activity. All tested MMAIII concentrations led to an inhibition of intracellular lactate dehydrogenase (LDH) activity. Results suggest that MMAIII induces important metabolic and functional changes in astrocytes that may affect brain homeostasis and that inflammation may play a major role in cognitive impairment-related pathogenicity in As-exposed populations.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Astrócitos/efeitos dos fármacos , Citocinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Homeostase/efeitos dos fármacos , Ratos Wistar
4.
Toxicology ; 337: 47-57, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26318284

RESUMO

The ubiquitin-proteasome system (UPS) is a specific, non-lysosomal pathway responsible for the controlled degradation of abnormal and short-half-life proteins. Despite its relevance in cell homeostasis, information regarding control of the UPS component gene expression is lacking. Data from a recent study suggest that the aryl hydrocarbon receptor (AHR), a ligand-dependent transcription factor, might control the expression of several genes encoding for UPS proteins. Here, we showed that activation of AHR by TCDD and ß-naphthoflavone (ß-NF) results in Ubcm4 gene induction accompanied by an increase in protein levels. UbcM4 is an ubiquitin-conjugating enzyme or E2 protein that in association with ubiquitin ligase enzymes or E3 ligases promotes the ubiquitination and 26S proteasome-mediated degradation of different proteins, including p53, c-Myc, and c-Fos. We also present data demonstrating increased c-Fos ubiquitination and proteasomal degradation through the AHR-mediated induction of UbcM4 expression. The present study shows that AHR modulates the degradation of proteins involved in cell cycle control, consistent with previous reports demonstrating an essential role of the AHR in cell cycle regulation.


Assuntos
Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Enzimas de Conjugação de Ubiquitina/biossíntese , Ubiquitinação/efeitos dos fármacos , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Plasmídeos/efeitos dos fármacos , Dibenzodioxinas Policloradas/farmacologia , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Transfecção , Enzimas de Conjugação de Ubiquitina/efeitos dos fármacos , Enzimas de Conjugação de Ubiquitina/genética , beta-Naftoflavona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...